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Beyond Network Equivalence

Ralf Koetter, Michelle Effros, and Muriel Médard

Abstract— In earlier work, we described an equivalence
result for network capacity. Roughly, that result is as follows.
Given a network of noisy, memoryless, point-to-point channels,
replace each channel by a noiseless, memoryless bit pipe of the
same capacity yields a new network such that any collection
of demands can be met on the network of noisy links if
and only if the same demands can be met on the network
of noiseless links. We here expand on these ideas to provide
a framework for studying more general networks, including
networks containing memoryless broadcast, multiple access,
and interference channels. For each network in this broader
class, we design two corresponding networks of noiseless,
memoryless point-to-point links. These two networks provide
upper and lower bounds in the following sense. Fix an arbitrary
collection of demands. If the given demands can be met on the
lower bounding network, then they can also be met on the
original network. Likewise, if the given demands can be met
on the original network, then they can also be met on the upper
bounding network.

I. INTRODUCTION

In [1], we introduced a new tool for investigating the

relationship between the two predominant approaches to

studying communications through networks. In the first of

these approaches, networks are treated as graphs comprised

of nodes and the noise-free, capacitated links that connect

them. A different approach is provided by multiterminal

information theory, which deals with noisy channels, or

rather the stochastic relationship of input and output variables

at nodes in a network. As a first step towards establishing

a connection between these seemingly disparate views, we

established an equivalence relationship in the special case of

a network of point-to-point links [1]. Roughly, that result is

as follows. An arbitrary collection of demands can be met

on a network of noisy, independent, memoryless links if and

only if it can be met on another network where each noisy

link is replaced by a noiseless bit pipe with capacity equal

to the noisy link capacity.

We here apply the same approach to study more general

stochastic components such as multiple access, broadcast,

and interference channels. While there appears to be no

obvious relationship between these canonical networks and
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networks of error free bit pipes, our goal is to develop bit-

pipe models for a broad library of components in such a

way that the capacity of any network comprised of the given

stochastic components can be bounded by the capacity of the

network of noiseless bit pipes achieved by replacing each

stochastic component by its corresponding bit-pipe model.

While existing achievability results for stochastic network

models can be used to find bit-pipe models useful in bound-

ing capacities from below, existing converses on network

components like broadcast and multiple access channels fail

to provide upper bounds on the behavior of those components

when employed in larger networks. That is, it is sometimes

necessary to operate component channels strictly above their

individual capacities in order to obtain the capacities of the

larger networks in which they are employed.

Given a library of bit-pipe models for stochastic com-

ponents, bounding the capacity for any network comprised

of these components is equivalent to finding the network

coding capacity for a corresponding network of error-free

bit pipes. In certain situations, most notably a multicast

demand, the network capacity has nice and simple answers.

Unfortunately, the general case is wide open. In fact, it

is suspected that the central combinatorial network coding

problem is hard, though NP hardness is only established for

the class of linear network coding [2]. Nevertheless, we can

solve this problem for small networks. This possibility to

characterize, in principle, the rate region of a combinatorial

network coding problem will be a corner stone for our

investigations.

The situation is not unlike issues in complexity theory,

where a lot of research is devoted to show that one problem

is essentially as difficult as another one without being able

to give precise expressions as to how difficult a problem

is in absolute terms. Inspired by this analogy, we resort

in this paper to characterizing the capacity of one network

communication problem in terms of capacities of the central

combinatorial network coding problem. This characterization

lends insights to a variety of questions such as degree-of-

freedom or high signal to noise ratio analysis.

The reduction of a network information theoretic question

to its combinatorial essence is also at the heart of recent

related publications, see e.g. [3]. While our approach and

results are quite different, we believe it to be no coincidence

that in both cases the reduction of a problem to its combi-

natorial essence is a central step.

II. THE SETUP

Our notation is similar to that of Cover and Thomas [4].

A multiterminal network comprises m nodes with associated

Forty-Seventh Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 30 - October 2, 2009

978-1-4244-5871-4/09/$26.00 ©2009 IEEE 997



random variables X(i) ∈ X (i) which are transmitted from

node i and Y (i) ∈ Y(i) which are received at node i.
Both X (i) and Y(i) may be either discrete or continuous.

The network is assumed to be memoryless, so it is char-

acterized by a conditional probability distribution p(y|x) =
p(y(1), . . . , y(m)|x(1), . . . , x(m)). A code of blocklength n
operates the network over n time steps with the goal of com-

municating, for each distinct pair of nodes i and j, message

W (i→j) ∈ W(i→j)def
= {1, . . . , 2nR(i→j)

} from source node i
to sink node j; R(i→j) is called the rate of the transmission.

The vector of rates R(i→j) is denoted by R.1 We denote

the random variables transmitted and received at node i at

time-step t by X
(i)
t and Y

(i)
t . A network is thus written as

a triple
(
∏m

i=1 X
(i), p(y|x),

∏m
i=1 Y

(i)
)

with the additional

constraint that random variable X
(i)
t is a function of random

variables {Y
(i)
1 , . . . , Y

(i)
t−1,W

(i→1), . . . ,W (i→m)} alone.

While this characterization is very general, it does not

exploit any information about the network’s structure. The

structure is given as a hypergraph G with node set V =
{1, . . . ,m} and hyperedge set E. Let P(V ) denote the

power set of V . Each directed hyperedge e ∈ E takes the

form e = [V1, V2], V1, V2 ∈ P(V ). Thus E ⊆ P(V ) ×
P(V ). For example, a point-to-point channel has a single

transmitter V1 = {i} and a single receiver V2 = {j}; a

broadcast channel has a single transmitter V1 = {i} and

multiple receivers V2 = {j1, . . . , jk}; and so on.

The indegree din(i) and outdegree dout(i) of node i in

hypergraph G are defined as din(i) = |{V1|[V1, V2] ∈
E, i ∈ V2}| and dout(i) = |{V2|[V1, V2] ∈ E, i ∈ V1}|.
If a node has outdegree or indegree larger than one, then

X (i) =
∏dout(i)

d=1 X (i,d) and Y(i) =
∏din(i)

d=1 Y(i,d), and the

inputs and outputs of node i at time t are given by X
(i)
t =

(X
(i,1)
t , . . . ,X

(i,dout(i))
t ) and Y

(i)
t = (Y

(i,1)
t , . . . , Y

(i,din(i))
t ).

Here X
(i,d)
t denotes the input from node i at time t to the

dth hyperedge for which node i is in the tail and X (i,d)

denotes its alphabet. Likewise, Y
(i,d)
t denotes the output at

node i at time t of the dth hyperedge for which node i is

in the tail and Y(i,d) denotes its alphabet. The orderings

for the hyperedges outgoing from and incoming to node i
are arbitrary but fixed. Given a hyperedge e = [V1, V2],
we use V1(e) and V2(e) to denote the input and output

ports of hyperedge e and XV1(e) and Y V2(e) to denote the

sets of input and output random variables of hyperedge e.

For example, consider a link e from node i to node j.

Then the input to hyperedge e = [{i}, {j}] at node i is

X(i,s) for some index s ∈ {1, . . . , dout(i)} while the output

from hyperedge [{i}, {j}] at node j is Y (j,r) for some

index r ∈ {1, . . . , din(j)}. In this case, V1(e) = (i, s) and

V2(e) = (j, r), giving XV1(e) = X(i,s) and Y V2(e) = Y (j,r)

as desired. The collection of sets {V1(e) : e ∈ E} ({V2(e) :
e ∈ E}) forms a partition of the set of random variables

X(1,1), . . . ,X(m,dout(m)) (Y (1,1), . . . , Y (m,din(m))).

When the characterization corresponds to network G =

1Nodes do not transmit messages to themselves. For the sake of brevity,
we do not make this explicit in our notation.

(V,E), we factor p(y|x) to give the characterization:
(

m
∏

i=1

X (i),
∏

e∈E

p(yV2(e)|xV1(e)),

m
∏

i=1

Y(i)

)

, (1)

again with the additional property that random variable

X
(i)
t is a function of random variables {Y

(i)
1 , . . . , Y

(i)
t−1,

W (i→1), . . . ,W (i→m)} alone. As in [1], we investigate some

information theoretic aspects of replacing factors in the

factorization of p(y|x).
Remark 1: In some situations it is important to be able

to embed the transmissions of various nodes in a schedule

which may or may not depend on the messages to be sent

and the symbols that were received in the network. It is

straightforward to model such a situation in the above setup

by including in the input and output alphabets symbols for

the case when nothing was sent on a particular link. In this

way we can assume that at each time t random variables

X
(i)
t and Y

(i)
t are given.

Definition 1: Let a network

N
def
=

(

m
∏

i=1

X (i),
∏

e∈E

p(yV2(e)|xV1(e)),

m
∏

i=1

Y(i)

)

be given corresponding to a hypergraph G = (V,E). A

blocklength-n solution S(N ) to this network is defined as a

set of encoding and decoding functions:

X
(i)
t : (Y(i))

t−1
×
∏m

k=1 W
(i→k) → X (i)

Ŵ (j→i) : (Y(i))
n
×
∏m

k=1 W
(i→k) → W(j→i)

mapping (Y
(i)
1 , . . . , Y

(i)
t−1,W

(i→1), . . . ,W (i→m)) to X
(i)
t

for each i ∈ V and t ∈ {1, . . . , n} and mapping

(Y
(i)
1 , . . . , Y

(i)
n ,W (i→1), . . . ,W (i→m)) to Ŵ (j→i) for each

i, j ∈ V . The solution S(N ) is called a (λ,R)-solution, de-

noted (λ,R)−S(N ), if the specified encoding and decoding

functions imply Pr(W (i→j) 6= Ŵ (i→j)) < λ for all source

and sink pairs i, j.

Definition 2: The rate region R(N ) ⊂ R
m(m−1)
+ of a

network N is the closure of all rate vectors R such that

for any λ > 0, a (λ,R) − S(N ) solution exists.2

Since we do not know the properties of an optimal

solution for a network N , we cannot eliminate the possibility

that such solutions vary with time (due, for example, to

feedback). As a result, we cannot apply the usual typicality

arguments across time. Instead, we create multiple, indepen-

dent copies of a network – here viewed as layers in a stack

of network copies – and apply typicality arguments across

layers of the stack.

Given a network N defined on hypergraph G, the N -

fold stacked network N is defined on N copies of G.

Since the vertex and edge sets of N are multisets and

not sets, the stacked network is not a network, and new

definitions are required. We carry over notation and variable

2In this and later definitions of rate regions, the blocklength n required
to achieve a solution with error probability λ need not be a constant. It
suffices that each error probability can be achieved with some (possibly
distinct) blocklength.
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definitions from the network N to the stacked network N
by underlining the variable names. So for any distinct i, j ∈

V , W (i→j) ∈ W(i→j)def
=(W(i→j))N is the N -dimensional

vector of messages that the copies of node i send to the

corresponding copies of node j, and X
(i)
t ∈ X

def
=XN and

Y
(i)
t ∈ Y

def
=YN are the N -dimensional vectors of channel

inputs and channel outputs, respectively, for node i at time

t. The variables in the ℓ-th layer of the stack are denoted

by an argument ℓ, for example W (i→j)(ℓ) is the message

from node i to node j in the ℓ-th layer of the stack

and X
(i)
t (ℓ) is the layer-ℓ channel input from node i at

time t. Since W (i→j) is an N -dimensional vector of mes-

sages, when W (i→j) ∈ W(i→j)def
= {1, . . . , 2nR}, W (i→j) ∈

W(i→j)def
= {1, . . . , 2nR}N . We therefore define the rate

R(i→j) for a stacked network to be (log |W(i→j)|)/(nN);
this normalization makes the rate of a network and its

corresponding stacked network comparable.

Definition 3: Let a network

N
def
=

(

m
∏

i=1

X (i),
∏

e∈E

p(yV2(e)|xV1(e)),

m
∏

i=1

Y(i)

)

be given corresponding to a hypergraph G = (V,E). Let

N be the N -fold stacked network for N . A blocklength-n
solution S(N ) to this network is defined as a set of encoding

and decoding functions

X
(i)
t : (Y(i))

t−1
×
∏m

k=1 W
(i→k) → X (i)

Ŵ
(j→i)

: (Y(i))n ×
∏m

k=1 W
(i→k) → W(j→i)

mapping

(Y
(i)
1 , . . . , Y

(i)
t−1,W

(i→1), . . . ,W (i→m))

to X
(i)
t for each t ∈ {1, . . . , n} and i ∈ V and mapping

(Y
(i)
1 , . . . , Y (i)

n ,W (i→1), . . . ,W (i→m)) to Ŵ
(j→i)

for each

i, j ∈ V . The solution S(N ) is called a (λ,R)-solution for

N , denoted (λ,R) − S(N ), if the encoding and decoding

functions imply

Pr(W (i→j) 6= Ŵ
(i→j)

) < λ

for all source and sink pairs i, j.

Definition 4: The rate region R(N ) ⊂ R
m(m−1)
+ of a

stacked network N is the closure of all rate vectors R such

that a (λ,R) − S(N ) solution exists for any λ > 0 and all

N sufficiently large.

Theorem 1 from [1] shows that the rate regions for a

network N and its corresponding stacked network N are

identical. That result further demonstrates that the error

probability for the stacked network can be made to decay

exponentially in the number of layers N and that for any rate

R ∈ int(R(N )) there exists a (2−Nδ,R) − S(N ) solution

for N that first channel codes each message W (i→j) and

then sends the channel coded description W̃
(i→j)

of W (i→j)

through the stacked network using the same solution S(N )
independently in each layer of N . We call a solution of this

type a stacked solution.

Definition 5: Let a network

N
def
=

(

m
∏

i=1

X (i),
∏

e∈E

p(yV2(e)|xV1(e)),
m
∏

i=1

Y(i)

)

be given corresponding to a hypergraph G = (V,E). Let

N be the N -fold stacked network for N . A blocklength-n
stacked solution S(N ) to this network is defined as a set of

mappings:

W̃
(i→j)

: W(i→j) → W̃
(i→j)

X
(i)
t : (Y(i))

t−1
×
∏m

k=1 W̃
(i→k) → X (i)

ˆ̃W
(j→i)

: (Y(i))
n
×
∏m

k=1 W̃
(i→k) → W̃(j→i)

Ŵ
(i→j)

: W̃
(i→j)

→ W(i→j)

such that

W̃
(i→j)

= W̃
(i→j)

(W (i→j))

X
(i)
t (ℓ) = X

(i)
t

(

Y
(i)
1 (ℓ), . . . , Y

(i)
t−1(ℓ),

W̃
(i→1)

(ℓ), . . . , W̃
(i→m)

(ℓ)
)

ˆ̃W
(j→i)

(ℓ) = ˆ̃W
(j→i) (

Y
(i)
1 (ℓ), . . . , Y (i)

n (ℓ),

W̃
(i→1)

(ℓ), . . . , W̃
(i→m)

(ℓ)
)

Ŵ
(i→j)

= W (i→j)( ˆ̃W
(i→j)

)

for each i, j ∈ V , t ∈ {1, . . . , n}, and ℓ ∈ {1, . . . , N}. The

solution S(N ) is called a stacked (λ,R)-solution, denoted

(λ,R) − S(N ), if the specified mappings imply

Pr(W (i→j) 6= Ŵ
(i→j)

) < λ

for all source and sink pairs i, j.

Theorem 1: [1, Theorem 1] The rate regions R(N ) and

R(N ) are identical. Further, there exist stacked solutions of

type (2−Nδ,R) − S(N ) for each R ∈ int(R(N )).

Since the proof of Theorem 1 shows that stacked solutions

can obtain all rates in the interior of R(N ), we restrict our

attention to stacked solutions going forward; there is no loss

of generality in this restriction.

Using a stacked solution, if W̃
(i→j)

(1), . . . , W̃
(i→j)

(N)
are independent and identically distributed (i.i.d.), then for

each time t

(X
(1)
t (1), . . . ,X

(m)
t (1), Y

(1)
t (1), . . . , Y

(m)
t (1)), . . . ,

(X
(1)
t (N), . . . ,X

(m)
t (N), Y

(1)
t (N), . . . , Y

(m)
t (N))

are also i.i.d. since the solutions in the layers of N are

independent and identical.

Our message inputs W̃
(i→j)

(1), . . . , W̃
(i→j)

(N) are not

the messages W (i→j)(1), . . . ,W (i→j)(N) (which are in-

dependent and uniformly distributed over W(i→j)(ℓ) by

assumption) but the channel coded versions of those

messages. To maintain the desired i.i.d. structure across
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W̃
(i→j)

(1), . . . , W̃
(i→j)

(N), we employ a random chan-

nel code design that draws each of the 2NnR(i→j)

code-

words in the codebook for message W (i→j) indepen-

dently and uniformly at random from the message set

W̃
(i→j)

. Maintaining the distribution over random codes,

W̃
(i→j)

(1), . . . , W̃
(i→j)

(N) are i.i.d. as desired. We put off

the choice of a particular instance of this code until the entire

code is in place. Our argument employs several random

codes, and a single instance of all codes is chosen jointly.

III. INTUITION AND SUMMARY OF RESULTS

As in [1], our goal is not to give the capacity regions

of networks with respect to various demands, which is an

intractable problem owing to its combinatorial nature. Rather,

we wish to develop bounds on the capacity of stochastic

components in terms of capacities of networks of point-to-

point links. Given the existence of a solution (λ,R)-S(N )
for a network N , we will try to imply statements for the

existence of a solution (λ′,R′)-S(N ′) for a network N ′.

Assume, for example, a network contains a hyperedge

ē = [{i1, i2}, {j}] which is a multiple access channel

describing the interference that results at node j when nodes

i1 and i2 transmit. The input and output random variables

are XV1(ē) = (X(i1,s1),X(i2,s2)) and Y V2(ē) = Y (j,r),

where i1, i2, j ∈ {1, . . . ,m}, s1 ∈ {1, . . . , dout(i1)}, s2 ∈
{1, . . . , dout(i2)}, and r ∈ {1, . . . , din(j)}. The transition

probability for the network thus factors as:

p(y(j,r)|x(i1,s1), x(i2,s2))
∏

e∈E\{ē}

p(yV2(e)|xV1(e)).

Let another network N̂ be given with random variables

X̂(i1,s1), X̂(i2,s2), and Ŷ (j,r) replacing X(i1,s1), X(i2,s2),

and Y (j,r) in N . We have replaced the multiple ac-

cess channel p(y(j,r)|x(i1,s1), x(i2,s2)) with another mul-

tiple access channel p̂(ŷ(j,r)|x̂(i1,s1), x̂(i2,s2)). We want

p̂(ŷ(j,r)|x̂(i1,s1), x̂(i2,s2)) to be the distribution for a collec-

tion of bit pipes and for the existence of a (λ,R)-S(N )
solution to imply the existence of a (λ̂,R)-S(N̂ ) solution,

where λ̂ can be made arbitrarily small if λ can. Since node

j need not decode, multiple access channel capacity is not

necessarily a relevant characterization of the channel’s be-

havior. For example in an additive Gaussian multiple access

channel, node j might contribute a real-valued estimation of

the sum X(i1,s1) + X(i2,s2); a collection of bit pipes cannot

immediately deliver the same functionality.

Our proofs adopt the operational perspective from [1].

Intuitively, we prove that the rate region for network N is

a subset of the rate region for network N̂ by proving that

if anyone shows us a way to operate network N at one rate

point, then we can find a way to operate network N̂ at the

same rate point. Roughly, we do this by showing that we

can emulate the solution designed for N on network N̂ to

sufficient accuracy that if the error probability can be made

arbitrarily small on N so too can the error probability on N̂ .

Since we do not know what optimal solutions look like, we

must show that we can emulate all possible solutions.

The proofs of our main results follow the same outline

as the proof of [1, Theorem 3]. An outline of that argument

appears in Section IV. The results for multiple access, broad-

cast, and interference channels then follow in Section V.

IV. OUTLINE OF PROOFS

Given a network N , let N̂− and N̂+ be the proposed

lower and upper bounding networks, respectively. We wish

to prove

R(N̂−) ⊆ R(N̂ ) ⊆ R(N̂+).

By Theorem 1, it suffices to prove

R(N̂
−

) ⊆ R(N̂ ) ⊆ R(N̂
+
).

Proof that R(N̂
−

) ⊆ R(N̂ ): A new lower bound can be

derived for any achievability result on each of the channel

components. Suppose that rate vector R(V1(ē),V2(ē)) is achiev-

able on channel p(yV2(ē)|xV1(ē)). Then the lower bounding

network replaces channel p(yV2(ē)|xV1(ē)) by a collection

of noiseless links that deliver precisely the rates promised

by R(V1(ē),V2(ē)). For any R ∈ int(R(N̂
−

)), there exists

a (2−Nδ,R)-S(N̂
−

) stacked solution by Theorem 1. We

run the solution S(N̂
−

) on N by using a dimension-

n, rate-R(V1(ē),V2(ē)) channel code across the N copies

p(yV2(ē)|xV1(ē)) at each time instant.

Proof that R(N̂ ) ⊆ R(N̂
+
): For any R ∈ int(R(N )), there

exists a (2−Nδ,R)-S(N ) stacked solution by Theorem 1. Let

S(N ) be the solution applied independently in each layer of

S(N ), and let n be the blocklength of solution S(N ). For

each t ∈ {1, . . . , n}, we use

pt(x
V1(ē), yV2(ē)) = pt(x

V1(ē))p(yV2(ē)|xV1(ē))

to designate the distribution established across the channel

described by hyperedge ē at time t when we run solution

S(N ) on the network N . Then

pt(x
V1(ē), yV2(ē)) =

N
∏

ℓ=1

pt(x
V1(ē)(ℓ), yV2(ē)(ℓ)).

For any ǫ = (ǫ(1), . . . , ǫ(n)) with ǫ(t) > 0 for all t and

any λ̄ > 0, let A
(N)
ǫ,t designate the jointly typical set of

channel inputs and outputs with respect to pt(x
V1(ē), yV2(ē))

and parameter ǫ(t). Our typical set is slightly modified from

its usual definition to enforce not only that each subset of the

elements of (xV1(ē), yV2(ē)) are jointly typical but also that

for each typical input xV1(ē), the conditional probability of

observing a jointly typical output yV2(ē) across the channel

is sufficiently high. We then define B
(N)
ǫ,t (λ̄) to designate

the subset of vectors (xV1(ē), yV2(ē)) ∈ A
(N)
ǫ,t for which the

conditional probability of observing an error in decoding one

or more message is at least λ̄ given (XV1(ē), Y V2(ē)) =

(xV1(ē), yV2(ē)). Lemma 2 bounds the size of B
(N)
ǫ,t (λ̄) as

a fraction of A
(N)
ǫ,t and the probability of this set under

distribution pt(x
V1(ē), yV2(ē)).
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Lemma 2: If there exists a (2−Nδ,R)-S(N ) stacked so-

lution for a stacked network N , then

|B
(N)
ǫ,t (λ̄)|

|A
(N)
ǫ,t |

≤
m22−N(δ−f1(ǫ,t))

λ̄
and

Pr(B
(N)
ǫ,t (λ̄)) ≤

m22−N(δ−f2(ǫ,t))

λ̄

for N sufficiently large.

The functions f1(ǫ, t) and f2(ǫ, t) vary with the distribu-

tion pt(x
V1(ē), yV2(ē)) and the coding instance, but all go to

zero as ǫ(t) goes to zero. The proof of Lemma 2 is essentially

a counting argument. Since the total error probability is 2−Nδ

and typical vectors have roughly equal probability, there can’t

be very many with high conditional error probability.

The next task in each proof is to design a source code that

approximates the typical behavior of the channel that we plan

to replace. The descriptions of the source codes in all three

cases appear below. The source encoders map each channel

input XV1(ē) in N̂ to one or more binary descriptions. The

binary descriptions are sent across the noiseless bit pipes.

The source decoders map the binary descriptions to the

emulated channel outputs Y V2(ē), which proceed through the

solution as if they were the usual channel outputs.

The final step of each proof is to bound the change in

the solution’s error probability caused by replacing channels

by source codes across noiseless bit pipes. In each case, we

show that the difference between the conditional distribution

on channel outputs given channel inputs created by the

source codes and the conditional distribution established

by the channel decays exponentially in the blocklength N .

Careful choice of parameters then allows us to prove that the

cumulative impact of this small difference on the solution’s

error probability can be made asymptotically small.

The source code descriptions follow.

A. Multiple Access Channels

For the multiple access channel, we design two encoders

α
(1)
N,t : X (i1,s1) → {1, . . . , 2NR1}

α
(2)
N,t : X (i1,s1) ×X (i2,s2) → {1, . . . , 2NR2}

and a single decoder

βN,t : {1, . . . , 2NR1} × {1, . . . , 2NR2} → Y(j,r).

Given p(u|x(i1,s1), x(i2,s2)) = p(u|x(i1,s1)) and distribu-

tion pt(x
(i1,s1), x(i2,s2), y(j,r)) from Section IV, the random

decoder design draws {γN,t(1), . . . , γN,t(2
NR1)} i.i.d. from

the distribution
∏N

ℓ=1 pt(uℓ). For each w1 ∈ {1, . . . , 2NR1},

draw {βN,t(w1, 1), . . . , βN,t(w1, 2
NR2)} i.i.d. from distribu-

tion pt(y
(j,r)|γN (w1)) =

∏N
ℓ=1 pt(y

(j,r)|γN (w1, ℓ)), where

γN,t(w1, ℓ) is the ℓth component of N -vector γN,t(w1).

The random design of encoders α
(1)
N,t and α

(2)
N,t proceeds as

follows. For each x(i1,s1) ∈ X (i1,s1), encoder α
(1)
N,t(x

(i1,s1))
is chosen uniformly at random from the indices w1 ∈
{1, . . . , 2NR1} for which (γN,t(w1), x

(i1,s1)) is typical. If

there are no such indices, then α
(1)
N,t(x

(i1,s1)) = 1.

For each (x(i1,s1), x(i2,s2)) ∈ X (i1,s1) ×X (i2,s2), encoder

α
(2)
N,t(x

(i1,s1), x(i2,s2)) is chosen uniformly at random from

the indices w2 for which
(

γN,t(α
(1)
N,t(x

(i1,s1))), x(i1,s1), x(i2,s2),

βN,t(α
(1)
N,t(x

(i1,s1)), w2)
)

is jointly typical and

(x(i1,s1), x(i2,s2), βN,t(α
(1)
N,t(x

(i1,s1)), w2)) 6∈ B
(N)
ǫ,t (λ̄).

If there is no such index, then α
(2)
N,t(x

(i1,s1), x(i2,s2)) = 1.

The rates in the upper bound are chosen so that the

probability of finding jointly typical codewords is high.

B. Broadcast Channels

For the broadcast channel, we design one source encoder

αN,t : X (i,s) → {1, . . . , 2NR1} × {1, . . . , 2nR2}

and two decoders

β
(1)
N,t : {1, . . . , 2NR1} → Y(j1,r1)

β
(2)
N,t : {1, . . . , 2NR1} × {1, . . . , 2NR2} → Y(j2,r2).

To design the decoder, draw {β
(1)
N,t(1), . . . , β

(1)
N,t(2

NR1)}

i.i.d. from distribution
∏N

ℓ=1 pt(y
(j1,r1)(ℓ)), and for each w1

draw {β
(2)
N,t(w1, 1), . . . , β

(2)
N,t(w1, 2

NR2)} i.i.d. from distribu-

tion
∏N

ℓ=1 pt(y
(j2,r2)(ℓ)|β

(1)
N,t(w1, ℓ)), where β

(1)
N,ℓ(w1, ℓ) is

the ℓth component of β
(1)
N,t(w1).

The encoder output αN,t(x
N ) is chosen uniformly

from the collection of indices (w1, w2) for which the

triple (xN , β
(1)
N,t(w1), β

(2)
N,t(w2)) is in A

(N)
ǫ,t \ B

(N)
ǫ,t (λ̄);

(α
(1)
N,t(x

N ), α
(2)
N,t(x

N )) = 1 if no such pair exists.

C. Interference Channels

For the interference channel, we design a source code

with two encoders and two decoders. We consider two

mechanisms for this design. These two mechanisms re-

sult in four possible scenarios by reversing the roles of

(X(i1,s1), Y (j1,r1)) and (X(i2,s2), Y (j2,r2)).
Mechanism 1: We design a source code with encoders

α
(1)
N,t : X (i1,s1) → {1, . . . , 2NR11} × {1, . . . , 2nR12}

α
(2)
N,t : X (i1,s1) ×X (i2,s2) →

2
∏

j=1

{1, . . . , 2NR2j}

and decoders

β
(1)
N,t :

2
∏

j=1

2
∏

i=1

{1, . . . , 2NRij} → Y(j1,r1)

β
(2)
N,t :

2
∏

i=1

{1, . . . , 2NRi2} → Y(j2,r2).

Given any distribution

p(u, v|x(i1,s1), x(i2,s2), y(j1,r1), y(j2,r2))

= p(v|x(i1,s1))p(u|x(i1,s1), v),
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and the distribution pt(x
(i1,s1), x(i2,s2), y(j1,r1), y(j2,r2))

from Section IV, the random decoder design begins by

drawing

{V (1), . . . , V (2NR12)}

i.i.d. from the distribution
∏N

ℓ=1 p(v(ℓ)) and for each w12 ∈
{1, . . . , 2NR12} drawing

{U(1, w12), . . . , U(2NR11 , w12)}

i.i.d. from the distribution
∏N

ℓ=1 p(u(ℓ)|V (w12, ℓ)), where

V (w12, ℓ) is the ℓth component of N -vector V (w12). We

then proceed to draw

{β
(2)
N,t(1, w12), . . . , β

(2)
N,t(2

nR22 , w12)}

i.i.d. from the distribution
∏N

ℓ=1 p(y(j2,r2)(ℓ)|V (w12, ℓ)). Fi-

nally, for each

(w11, w12, w22) ∈
∏

(i,j)∈{1,2}2\{(2,1)}

{1, . . . , 2nRij},

draw

{β
(1)
N,t(w11, w12, 1, w22), . . . , β

(1)
N,t(w11, w12, 2

NR21 , w22)}

i.i.d. from the distribution

N
∏

ℓ=1

p(y(j2,r2)(ℓ)|U(w11, w12, ℓ), V (w12, ℓ), β
(2)
N,t(w12, w22, ℓ)).

The random design of encoders α
(1)
N,t and α

(2)
N,t proceeds

as follows. For each x(i1,s1) ∈ X (i1,s1), encoder output

α
(1)
N,t(x

(i1,s1)) = (α11(x(i1,s1)), α12(x(i1,s1))), is chosen

uniformly from the family of indices of codewords that is

jointly typical and not in B
(N)
ǫ,t (λ̄). If there are no such

codewords, then α
(1)
N,t(x

(i1,s1)) = (1, 1). Similarly, for each

(x(i1,s1), x(i2,s2)) ∈ X (i1,s1) ×X (i2,s2), encoder output

α
(2)
N,t(x

(i1,s1), x(i2,s2))

= (α21
N,t(x

(i1,s1), x(i2,s2)), α22
N,t(x

(i1,s1), x(i2,s2)))

is chosen uniformly at random from the family of indices

of codewords that is jointly typical and not in B
(N)
ǫ,t (λ̄).

α
(2)
N,t(x

(i1,s1), x(i2,s2)) = (1, 1) otherwise.

Mechanism 2: In this case, we design a source code with

encoders

α
(1)
N,t : (X (i1,s1))N → {1, . . . , 2NR11} × {1, . . . , 2nR12}

α
(2)
N,t : (X (i1,s1))N × (X (i2,s2))N →

2
∏

j=1

{1, . . . , 2NR2j}

and decoders

β
(1)
N,t :

2
∏

i=1

{1, . . . , 2NRi2} → (Y(j1,r1))N

β
(2)
N,t :

2
∏

j=1

2
∏

i=1

{1, . . . , 2NRij} → (Y(j2,r2))N .

While the encoder arguments have not changed, this formula-

tion differs from the previous one in that roles of the decoder

has changed – in this case decoder 2 has access to both sets

of descriptions while decoder 1 has access to only one set.

Given any distribution

p(u, v|x(i1,s1), x(i2,s2), y(j1,r1), y(j2,r2))

= p(u|x(i1,s1))p(v|x(i1,s1), u),

and the distribution pt(x
(i1,s1), x(i2,s2), y(j1,r1), y(j2,r2))

from Section IV, the random decoder design begins by

drawing

{U(1), . . . , U(2NR11)}

i.i.d. from the distribution
∏N

ℓ=1 p(u(ℓ)) and for each w11 ∈
{1, . . . , 2NR11} drawing

{V (w11, 1), . . . , V (w11, 2
NR12)}

i.i.d. from the distribution
∏N

ℓ=1 p(v(ℓ)|U(w11, ℓ)), where

U(w11, ℓ) is the ℓth component of N -vector U(w11). We

then proceed to draw

{β
(1)
N,t(w11, 1), . . . , β

(1)
N,t(w11, 2

nR21)}

i.i.d. from the distribution
∏N

ℓ=1 p(y1,ℓ|U(w11, ℓ)). Finally,

for each

(w11, w12, w21) ∈
∏

(i,j)∈{1,2}2\{(2,2)}

{1, . . . , 2nRij},

draw

{β
(2)
N,t(w11, w12, w21, 1), . . . , β

(2)
N,t(w11, w12, w21, 2

NR22)}

i.i.d. from the distribution
∏N

ℓ=1 p(y(j2,r2)(ℓ)|

U(w11, ℓ), V (w11, w12, ℓ), β
(1)
N,t(w11, w21, ℓ)).

The random design of encoders α
(1)
N,t and α

(2)
N,t proceeds as

follows. For each x(i1,s1), encoder output α
(1)
N,t(x

(i1,s1)) =

(α11(x(i1,s1)), α12(x(i1,s1))), is chosen uniformly from the

set of indices of jointly typical codewords. If there are no

such codewords, then α
(1)
N,t(x

(i1,s1)) = (1, 1). Similarly, for

each (x(i1,s1), x(i2,s2)), encoder output

α
(2)
N,t(x

(i1,s1), x(i2,s2))

= (α21
N,t(x

(i1,s1), x(i2,s2)), α22
N,t(x

(i1,s1), x(i2,s2)))

is chosen uniformly at random from the set of indices of

jointly typical codewords for which the channel input and

output are not in B
(N)
ǫ,t (λ̄).

W(x(i1,s1), x(i2,s2)) if it is non-empty and from

{1, . . . , 2NR21} × {1, . . . , 2NR22} otherwise. If there are no

such codewords, then α
(2)
N,t(x

(i1,s1), x(i2,s2)) = (1, 1).

V. RESULTS

The discussion that follows presents our main results for

three canonical networks. Our proof of the lower bound

allows us to turn any existing achievability result into a

lower bounding network. Only one example is given for the

broadcast channel and none are given for the interference

channel due to space constraints.
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A. Multiple Access Channels

Consider a network N with transition probabilities (1),

where p(yV2(ē)|xV1(ē)) = p(y(j,r)|x(i1,s1), x(i2,s2)) corre-

sponds to a multiple access channel with transmitter nodes

i1 and i2 and receiver node j. We wish to derive upper and

lower bounds on the capacity of the given network as a

function of the capacity of corresponding networks where

the multiple access channel is replaced by a collection of

noiseless, point-to-point bit pipes.

Our main result for multiple access channels shows that

we can bound the capacity of a network containing a multiple

access channel by the capacities of two distinct networks in

which the multiple access channel is replaced by a collection

of point-to-point noiseless links.

Theorem 3: Given a network

N =
(

X (1,1) × · · · × X (i1,s1) × · · · × X (i2,s2)

× · · · × X (m,dout(m)), p(y(j,r)|x(i1,s1), x(i2,s2))

·
∏

e∈E\{ē}

p(yV2(e)|xV1(e)),Y(1,1) × · · ·

×Y(j,r) × · · · × Y(m,din(m))
)

with node indegree din(i) and outdegree dout(i) for each

i ∈ {1, . . . ,m}, define a new network N̂

N̂ =
(

X (1,1) × · · · × X̂ (i1,s1) × · · · × X̂ (i1,d̂out(s1)×

· · · × X̂ (i2,s2) × · · · × X (m,d̂out(m)),

δ(x̂(i1,s1) − ŷ(j,r))δ(x̂(i1,d̂out(i1)) − x̂(i2,d̂in(i2)))

·δ(x̂(i2,s2) − ŷ(j,d̂in(j)))
∏

e∈E\{ē}

p(yV2(e)|xV1(e)),

Y(1,1) × · · · × Ŷ(i2,d̂in(i2)) × · · · × Ŷ(j,r) × · · ·

×Ŷ(j,d̂in(j)) × · · · × Y(m,d̂in(m))
)

,

with node indegrees d̂in(i2) = din(i2)+1, d̂in(j) = din(j)+
1, and d̂in(i) = din(i) for all i ∈ {1, . . . ,m} \ {i2, j} and

node outdegrees d̂out(i1) = dout(i1) + 1 and d̂out(i) =
dout(i) for all i ∈ {1, . . . ,m}\{i1}. This replaces the single

hyperedge ē = [{i1, i2}, {j}] by new edges ê1 = [{i1}, {j}],
ê2 = [{i2}, {j}], ê1 = [{i1}, {i2}] which are bit pipes of

capacities R1, R2, and R3, respectively.

1) If

R1 < I(X(i1,s1);Y (j,r)|X(i2,s2))

R2 < I(X(i2,s2);Y (j,r)|X(i1,s1))

R1 + R2 < I(X(i1,s1),X(i2,s2);Y (j,r))

R3 = 0,

for some input distribution p(x(i1,s1), x(i2,s2)) =
p(x(i1,s1))p(x(i2,s2)) on alphabet X (i1,s1) × X (i2,s2),

then R(N̂ ) ⊆ R(N ).
2) If there exists a conditional distribution

p(u|x(i1,s1), x(i2,s2)) = p(u|x(i1,s1)) for which

R1 > I(X(i1,s1);U)

R2 > I(X(i1,s1),X(i2,s2);Y (j,r)|U)

R3 = ∞,

for all distributions p(x(i1,s1), x(i2,s2)) on alphabet

X (i1,s1) ×X (i2,s2), then R(N ) ⊆ R(N̂ ).

B. Broadcast Channels

Consider a network N with transition probabilities (1),

where p(yV2(ē)|xV1(ē)) = p(y(j1,r1), y(j2,r2)|x(i,s)) corre-

sponds to a broadcast channel with transmitter node i and

receiver nodes j1 and j2. We next derive upper and lower

bounds on the capacity of this network as a function of

the capacity of corresponding networks where the broadcast

channel has been replaced by noiseless, point-to-point bit

pipes.

Theorem 4: Given a network

N =
(

X (1,1) × · · · × X (i,s) × · · · × X (m,dout(m)),

p(y(j1,r1), y(j2,r2)|x(i,s))
∏

e∈E\{ē}

p(yV2(e)|xV1(e)),

Y(1,1) × · · · × Y(j1,r1) × · · · × Y(j2,r2) × · · ·

×Y(m,din(m))
)

with node indegree din(j) and outdegree dout(j) for each

j ∈ {1, . . . ,m}, define a new network N̂

N̂

=
(

X (1,1) × · · · × X̂ (i,s) × · · · × X̂ (i,d̂out(s)) × · · ·

×X (m,d̂out(m)), δ(x̂(i,s) − ŷ(j1,r1))

·δ(x̂(i,d̂out(i)) − ŷ(j2,r2))δ(x̂(j1,d̂out(j1)) − ŷ(j2,d̂in(j2)))
∏

e∈E\{ē}

p(yV2(e)|xV1(e)),Y(1,1) × · · · × Ŷ(j1,r1) ×

· · · × Ŷ(j2,r2) × · · · × Ŷ(j2,d̂in(j2)) × · · ·

×Y(m,d̂in(m))
)

,

with node outdegrees d̂out(i) = dout(i) + 1, d̂out(j1) =
dout(j1)+1, and d̂out(j) = dout(j) for all j ∈ {1, . . . ,m} \
{i, j1} and node indegrees d̂in(j2) = din(j2) + 1 and

d̂in(j) = din(j) for all j ∈ {1, . . . ,m} \ {i1}. This replaces

hyperedge ē = [{i}, {j1, j2}] by three new edges ê1 =
[{i}, {j1}], ê2 = [{i}, {j2}], and ê3 = [{j1}, {j2}] which

are bit pipes of capacities R1, R2, and R0, respectively.

1) Suppose p(y(j1,r1), y(j2,r2)|x(i,s)) describes a physi-

cally or stochastically degraded broadcast channel with

Y (j1,r1) as the more degraded channel output. Then

R1 < I(U ;Y (j1,r1))

R2 < I(X(i,s);Y (j2,r2)|U)

R0 < I(U ;Y (j1,r1))

for some p(u)p(x(i,s)|u), then R(N̂ ) ⊆ R(N ).
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2) If

R1 > I(X(i,s);Y (j1,r1))

R2 > I(X(i,s);Y (j2,r2)|Y (j1,r1))

R0 = I(X(i,s);Y (j1,r1))

for all p(x(i1,s1), x(i2,s2)), then R(N ) ⊆ R(N̂ ).
Remark 2: Given a non-degraded channel and any achiev-

able rate triple (R0, R1, R2), a corresponding result can be

derived with the same network topology. (Here R0 represents

the rate for the common information.)

C. Interference Channels

Finally, consider a network N with transition

probabilities (1), where p(yV2(ē)|xV1(ē)) =
p(y(j1,r1), y(j2,r2)|x(i1,s1), x(i2,s2)) corresponds to an

interference channel with transmitter nodes i1 and i2 and

receiver nodes j1 and j2. We next describe an upper bound

on the capacity of this network as a function of the capacity

of two networks where the interference channel has been

replaced by noiseless, point-to-point bit pipes. We omit the

lower bounds due to space constraints. As in all cases, any

known achievability bound for the given network can be

applied to create a lower bounding network.

Theorem 5: Given a network

N =
(

X (1,1) × · · · × X (i1,s1) × · · · × X (i2,s2) × · · ·

×X (m,dout(m)),

p(y(j1,r1), y(j2,r2)|x(i1,s1), x(i2,s2))

·
∏

e∈E\{ē}

p(yV2(e)|xV1(e)),

Y(1,1) × · · · × Y(j1,r1) × · · · × Y(j2,r2) × · · ·

×Y(m,din(m))
)

with node indegree din(j) and outdegree dout(j) for each

j ∈ {1, . . . ,m}. For the sake of notational brevity, let d1 =
dout(i1) + 1, d2 = dout(i1) + 2, d3 = dout(i2) + 1, d4 =
dout(j1) + 1, d5 = dout(j2) + 1, d6 = din(j1) + 1, d7 =
din(j1) + 2, d8 = in(j2) + 1, d9 = din(j2) + 2, and d10 =
din(i2) + 1. Define a new network N̂

N̂ =
(

X (1,1) × · · · × X̂ (i1,s1) × · · · × X̂ (i1,d1) × · · ·

×X̂ (i1,d2) × · · · × X̂ (i2,s2) × · · · × X̂ (i2,d3) × · · ·

×X̂ (j1,d4) × · · · × X̂ (j2,d5) × · · · × X (m,d̂out(m)),

·δ(x̂(i1,s1) − ŷ(j1,r1))δ(x̂(i2,s2) − ŷ(j2,r2))

·δ(x̂(i1,d1) − ŷ(j2,d8))δ(x̂(i2,d3) − ŷ(j1,d6))

·δ(x̂(j1,d4) − ŷ(j2,d9))δ(x̂(j2,d5) − ŷ(j1,d7))

·δ(x̂(i1,d2) − ŷ(i2,d10))
∏

e∈E\{ē}

p(yV2(e)|xV1(e)),

Y(1,1) × · · · × Ŷ(i2,d10) × · · · × Ŷ(j1,r1) × · · ·

×Ŷ(j1,d6) × · · · × Ŷ(j1,d7) × · · · × Ŷ(j2,r2) × · · ·

×Ŷ(j2,d8) × · · · × Ŷ(j2,d9) × · · · × Y(m,din(m))
)

.

This replaces hyperedge ē = [{i1, i2}, {j1, j2}] by edges

ê1 = [{i1}, {j1}], ê2 = [{i2}, {j2}], ê3 = [{i1}, {j2}],
ê4 = [{i2}, {j1}], ê5 = [{j1}, {j2}], ê6 = [{j2}, {j1}], and

ê7 = [{i1}, {i2}] which are bit pipes of capacities R11, R22,

R12 R21, R5, R6, and R7, respectively.

1) If there exists a distribution p(u, v|x(i1,s1), x(i2,s2)) =
p(v|x(i1,s1))p(u|x(i1,s1), v) for which

R11 > I(X(i1,s1);U |V )

R12 > I(X(i1,s1);V )

R21 > I(X(i1,s1),X(i2,s2);Y (j1,r1)|U, V, Y (j2,r2))

R22 > I(X(i1,s1),X(i2,s2);Y (j2,r2)|V )

for all p(x(i1,s1), x(i2,s2)) and R5 = 0, R6 = R12 +
R22, and R7 = ∞, then R(N ) ⊆ R(N̂ ).

2) If there exists a distribution p(u, v|x(i1,s1), x(i2,s2)) =
p(u|x(i1,s1))p(v|x(i1,s1), u) for which

R11 > I(X(i1,s1);U)

R12 > I(X(i1,s1);V |U)

R21 > I(X(i1,s1),X(i2,s2);Y (j1,r1)|U)

R22 > I(X(i1,s1),X(i2,s2);Y (j2,r2)|U, V, Y1)

for all p(x(i1,s1), x(i2,s2)) and R5 = R11 +R21, R6 =
0, and R7 = ∞, then R(N ) ⊆ R(N̂ ).
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